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Abstract – A method applying independent component analysis
(ICA) to detect the electrocardiogram of a prenatal cattle foetus
is described. Three channels of signal, one is from chest lead and
two are from abdominal leads, are picked up noninvasively by
attaching disposable cutaneous electrodes on the body surface of
a maternal cow. Measured signals are the mixtures of
components including maternal ECG, foetal ECG and random
noise. Such mixture procedure is expressed by a time-invariant
linear model. To separate foetal ECG from maternal ECG and
random noise, the ICA method is applied to find an optimal
separating matrix only using measured signals. The
optimization uses hyperbolic tangent as a contrast function and
minimizes it based upon the principle of mutual information.
The method was examined by simulation signals generated by
random mixture of two-signal and one-noise sources. Real
signals, measured from a pregnant cow having 177-day
gestation, are used to verify the separation. The results show
that in simulation, both signal and one noise are clearly
separated. Real measurement is successfully distinguished into
three signal sources, maternal ECG, foetal ECG and random
noise. The results suggested the effectiveness of ICA approach in
detecting foetal ECG from maternal body surface measurement.

Keywords – Foetal ECG detection, independent component
analysis, blind source separation, mutual information

I. INTRODUCTION

Prenatal diagnosis and monitoring the health status of an
unborn cattle foetus is indispensable in preventing natural
abortion and premature birth [3]. One of the applicable
methods is to measure the foetal electrocardiogram (fECG)
and heart rate [4]. However, fECG signal, measured from
maternal body surface, is weak and usually contaminated by
the maternal electrocardiogram (mECG) and electromyogram
(mEMG) as well as random noise. The raw measurement of
foetal signal is not enough to detect the foetal heart rate. We
present here an approach using only three channels of
measured signal to separate fECG from mECG and
background random noise.

II. METHOD AND MATERIALS

The mECG and fECG originate from the maternal heart
and foetal heart respectively. Their waveforms and beat
rhythm is considered independent. Signals measured through
multi-lead on the maternal body surface are the mixtures of
several sources of signals, including mECG, fECG and
random noise. Independent component analysis (ICA)

method, also known as blind source separation [6] is
currently used in removing random noise and extracting
interested signals [2][7] where the mixed multiple signals are
statistically independent.

A. ICA Principle
ICA problem was raised as a cocktail party problem, which

demands separating different speaker’s voice from each other
and background music. In this study, three-channel signals
are picked up using three different leads. Each measured
signal comprises multiple signal components from different
sources. This mixing procedure is depicted in Fig. 1.

In this model, the sources s1(t) and s2(t) represent signals
generated by maternal heart and foetal heart respectively.
s3(t) represents random noise. These signals are transmitted to
the maternal body surface through the body issues with
unknown parameters aij, (i, j=1, 2, 3). The mixed signals are
picked up as x1(t), x2(t) and x3(t) via two abdominal leads and
one chest lead respectively using cutaneous electrodes on the
maternal body surface.

Analytical equations for the ICA model can be expressed
in a matrix form as

( ) ( )tt Asx = (1)

where, ( ) ( ) ( ) ( )[ ]Ttststst 321=s ( ) ( ) ( ) ( )[ ]Ttxtxtxt 321=x ,

[ ] [ ] [ ]( )Taaaaaaaaa 333231232221131211=A . A is

called a “mixing matrix”. Superscript T denotes vector or
matrix transposition.

The goal of ICA is to find a “separating matrix” W, which
is as close to A-1 as possible, based upon a proper statistical
criteria, in order to optimally recover the original source
signals as

( ) ( ) ( ) ( )tttt sWAsWxy ≅== (2)

Fig. 1. A simplified ICA model describing the mixture of maternal
electrocardiogram (mECG=s1(t)), foetal electrocardiogram (fECG= s2(t)) and

random noise (=s3(t)).
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In a simplified ICA model, we suppose that matrix A is a

time invariant (constant) matrix and the propagation delays
can be ignored.

Signals s1, s2 and s3 are statistically independent means that
their joint probability density function is factorable, i.e.

( ) ( )∏
=

=
3
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i
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(3)

The mutual information I(py) is defined as the Kullback-
Leibler divergence between the joint density of all signals
and the product of their marginal densities as
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It is clear that I(py) will be equal to zero when the
recovered signals y1, y2 and y3 are mutual independent.

For an invertible non-linear transformation y=g(v)=g(Wx),
we have [6]
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p x
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= (5)

Therefore, using observed signals x and selecting a proper
contrast function g, y can be optimally separated by
minimizing I(py) with respect to W.

If the joint probability density function of px(u) and
marginal density functions pxi(ui) are known, i.e. a prior
knowledge on signal model, maximum likelihood estimation
can be applied. If it is not the case, truncating Edgeworth
expansion can be used to approximate probability densities.

A fixed-point algorithm for updating W was developed by
[1]. Its iterative steps are recapitulated below.

1. Choose an arbitrary (random) matrix as an initial W.
2. Let ( ){ } ( ){ }WWxWxxW gEgE ′−=+

3. Let ++= WWW

4. If not converged, repeat iteration from step 2.
where g(Wx) is selected as a hyperbolic tangent function,

i.e. g(Wx)=tanh(Wx). The convergence means that the old
and new values of W point in the same direction, i.e. their dot
product is near to one.

Fig. 2. Original signals for simulation purpose. The first row has a higher
heart rate, denotes the fECG. The second row has a longer R-R interval,

denotes the mECG. The third row denotes random noise.

Fig. 3. Mixture of simulation signals using a randomly generated 3×3 mixing
matrix. These signals simulate the mixed signals measured by multiple

sensors from different leads.

B. Simulation
To verify the fixed-point ICA algorithm and its MATLAB

implementation, a set of simulation signals is generated. The
original signals are showed in Fig. 2. Signal vector s(t), from
top to bottom in Fig. 2, denote the fECG, mECG and random
noise, respectively. A 3×3 mixing matrix A is generated
randomly and given as below:

















=
526.0334.0129.0

795.0877.0596.0

379.0778.0835.0

A (6)

The mixture signal vector x(t) is created by (1) and the
results are showed in Fig. 3.

C. Signal Collection
A pregnant Holstein cow, having gestation period of 177

days, was studied. Two channels of signal were from two
abdominal leads. The third signal was from a chest lead. A
multi-channel polygraph (NEC Medical System, Model 365)
and a digital tape recorder (SONY, PC204A) were used to
collect signals. Experimental schema is depicted in Fig. 4.
Signals were digitised into a personal computer using a 12-bit
A/D converter at 250 Hz sampling rate.

Fig. 4. The experimental scheme and electrodes placement for signal
collection. Three channels of signal are collected by three different leads. A
chest lead picks up the maternal signal; two abdominal leads collect mainly

the foetal signal.
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III. RESULTS

The fixed-point ICA algorithm was implemented using
MATLAB script. Its performance was examined by both
simulation data and measured signals.

A. Simulation Data
Simulation signals showing in Fig. 3 were used as input to

the ICA program. Its separation result is showed in Fig. 5.
Apparently, the performance of separation is stunning.
Nevertheless, The amplitudes of separated signals are
completely rescaled. This is because any scalar multiplier in
any one of the sources does not affect its statistical
independency. As signals are considered as random variables,
for simplifying the ICA algorithm and acquiring better
convergence condition, input signals are pre-processed,
including “centering” and “whitening”, before separation
algorithm is applied. Such operations leave the ambiguity in
recovered signal’s amplitude and sign. Fortunately, this fault
is not always noticeable if only the heart rate is required in
this case.

B. Measured Signals
Original measured signals from a pregnant Holstein cow is

showed in Fig. 6. Top two signals (Ch1 and Ch2) are
collected using two abdominal leads. Random noise and
maternal component are seen clearly in Ch1 and Ch2. The
third channel (Ch3) signal is collected from a chest lead. Its
signal quality is somewhat better than that of the foetal signal.

Separation result is showed in Fig. 7. Signals are
distinguished into three independent components. Random
noise, the foetal ECG and the maternal ECG are showed from
top to bottom rows, respectively. The amplitude of any one
signal is completely rescaled. Random noise is recognized as
one independent component. Random noise in foetal ECG is
attenuated and maternal component in it is almost removed as
compared to Ch2 in Fig. 6. Thus, there will be no difficulty in
using enhanced foetal ECG to detect foetal heart rate.

Fig. 5. Separation of simulation signals. Simulated maternal ECG, foetal
ECG and random noise are recovered well except for their signal amplitudes

are rescaled.

Fig. 6. Measured three channels of signal. Top two signals are from two
abdominal leads respectively. The third channel is from a chest lead.

IV. DISCUSSION

Several methods had been proposed to monitor the health
status of foetal cattle. Ultrasonic Doppler sensor was inserted
into the interior of the rectum to monitor arterial blood flow
inside the placenta [5]. Ultrasound echo imaging was also
used to detect foetal heart sound [4]. It requires keeping an
ultrasonic sensor fixed on the abdominal surface and direct
the ultrasonic beam toward the foetal heart. These methods
are not suitable for long-term monitoring. We had showed
that an adaptive filtering method was effective in enhancing
the foetal ECG for foetal heart rate detection [8]. This paper
tried an alternative approach to extract the foetal ECG from
original noisy measurements. Choosing a proper contrast
function is important in separating the target foetal signal.
Comparing several contrast functions, we found that a
hyperbolic tangent function seems to give the most
satisfactory results. This property remains to be studied
further.

Fig. 7. Separation of maternal and foetal ECG as well as random noise using
three-channel measured signals. From the top to the bottom rows, estimated

random noise, foetal ECG and maternal ECG are showed respectively.
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V. CONCLUSION

This paper applied the ICA method to detect the foetal
ECG, and confirmed its effectiveness by using simulation
data and measured signals. The results showed that the ICA is
applicable to be utilized in separating foetal ECG from
maternal ECG and random noise, because both maternal ECG
and random noise are generated from different sources with
foetal ECG, these sources can be considered independent
stochastically. The ICA method will provide a perspective
means for a long-term monitoring of foetal cattle’s health
status in order to prevent abortion and premature birth, as
well as a clue to the prenatal diagnosis.
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